4,831 research outputs found

    Constraining the distribution of dark matter at the Galactic centre using the high-resolution Event Horizon Telescope

    Full text link
    We investigate constraints on the distribution of dark matter in the neighbourhood of the Galactic centre that may eventually be attained with the high-resolution Event Horizon Telescope (EHT). The shadow of a black hole in vacuum is used to generate a toy model describing how dark matter affects the size of the shadow of the supermassive black hole located at the Galactic centre. Observations by the EHT may constrain the properties of the dark matter distribution in a possible density spike around the black hole. Current uncertainties due to both the resolution of the telescope and the analysis of stellar orbits prevent one from discerning the effect of dark matter on the measured size of the shadow. The change in the size of the shadow induced by dark matter can be seen as an additional uncertainty in any test of general relativity that relies on using the angular size of the shadow to estimate the Schwarzschild radius of the black hole.Comment: 5 pages, 4 figures. v2: a few comments and references added, one figure replaced for clarity, results unchanged, matches version published in A&

    Remnants of galactic subhalos and their impact on indirect dark-matter searches

    Full text link
    Dark-matter subhalos, predicted in large numbers in the cold-dark-matter scenario, should have an impact on dark-matter-particle searches. Recent results show that tidal disruption of these objects in computer simulations is overefficient due to numerical artifacts and resolution effects. Accounting for these results, we re-estimated the subhalo abundance in the Milky Way using semianalytical techniques. In particular, we showed that the boost factor for gamma rays and cosmic-ray antiprotons is increased by roughly a factor of twoJ.L. and M.S. are partly supported by the Agence Nationale pour la Recherche (ANR) Project No. ANR-18-CE31-0006, the Origines, Constituants, et EVolution de l’Univers (OCEVU) Labex (No. ANR-11-LABX-0060), the CNRS IN2P3-Theory/INSU-PNHE-PNCG project “Galactic Dark Matter,” and the European Union’s Horizon 2020 Research and Innovation Program under Marie SkƂodowska-Curie Grant Agreements No. 690575 and No. 674896, in addition to recurrent funding by the Centre National de la Recherche Scientifique (CNRS) and the University of Montpellier. T.L. is supported by the European Union’s Horizon 2020 Research and Innovation Program under the Marie SkƂodowska-Curie grant agreement No. 713366. The work of TL was also supported by the Spanish Agencia Estatal de Investigación through grants PGC2018-095161-B-I00, IFT Centro de Excelencia Severo Ochoa SEV-2016-0597, and Red Consolider MultiDark FPA2017-90566-RED

    Configuration mixing within the energy density functional formalism: pathologies and cures

    Full text link
    Configuration mixing calculations performed in terms of the Skyrme/Gogny Energy Density Functional (EDF) rely on extending the Single-Reference energy functional into non-diagonal EDF kernels. The standard way to do so, based on an analogy with the pure Hamiltonian case and the use of the generalized Wick theorem, is responsible for the recently observed divergences and steps in Multi-Reference calculations. We summarize here the minimal solution to this problem recently proposed [Lacroix et al, arXiv:0809.2041] and applied with success to particle number restoration[Bender et al, arXiv:0809.2045]. Such a regularization method provides suitable corrections of pathologies for EDF depending on integer powers of the density. The specific case of fractional powers of the density[Duguet et al, arXiv:0809.2049] is also discussed.Comment: 5 pages, Proceedings of the French-Japanese Symposium, September 2008. To be published in Int. J. of Mod. Phys.

    Looking for ultralight dark matter near supermassive black holes

    Full text link
    Measurements of the dynamical environment of supermassive black holes (SMBHs) are becoming abundant and precise. We use such measurements to look for ultralight dark matter (ULDM), which is predicted to form dense cores ("solitons") in the centre of galactic halos. We search for the gravitational imprint of an ULDM soliton on stellar orbits near Sgr A* and by combining stellar velocity measurements with Event Horizon Telescope imaging of M87*. Finding no positive evidence, we set limits on the soliton mass for different values of the ULDM particle mass mm. The constraints we derive exclude the solitons predicted by a naive extrapolation of the soliton-halo relation, found in DM-only numerical simulations, for 2×10−20 eVâ‰Čmâ‰Č8×10−19 eV2\times10^{-20}~{\rm eV}\lesssim m\lesssim8\times10^{-19}~{\rm eV} (from Sgr A*) and mâ‰Č4×10−22 eVm\lesssim4\times10^{-22}~{\rm eV} (from M87*). However, we present theoretical arguments suggesting that an extrapolation of the soliton-halo relation may not be adequate: in some regions of the parameter space, the dynamical effect of the SMBH could cause this extrapolation to over-predict the soliton mass by orders of magnitude.Comment: 9 pages + appendices, 5 + 2 figures. v2: some clarifications and references added; conclusions unchanged; version published in JCAP. v3: few typos correcte

    s- and d-wave superconductivity in a two-band model

    Full text link
    Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts a huge interest. The study of this problem is relevant for materials as the high Tc oxides, pnictides and heavy fermions. In this work we study a realistic model that includes the relevant physics of superconductivity in the presence of strong Coulomb correlations. We consider a two-band model, since most of these correlated systems have electrons from at least two different atomic orbitals coexisting at their Fermi surface. The Coulomb repulsion is taken into account through a local repulsive interaction. Pairing is considered among quasi- particles in neighbouring sites and we allow for different symmetries of the order parameter. In order to deal with the strong local correlations, we use the well known slave boson approach that has proved very successful for this problem. Here we are interested in obtaining the zero temperature properties of the model, specifically its phase diagram and the existence and nature of superconducting quantum critical points. We show that these can arise by increasing the mixing between the two bands. Since this can be controlled by external pressure or doping, our results have a direct relation with experiments. We show that the superconductor-to-normal transition can be either to a metal, a correlated metal or to an insulator. Also we compare the relative stability of s and d-wave paired states for different regions of parameter space and investigate the BCS- BEC crossover in the two-band lattice model as function of the strength of the pairing interaction.Comment: 21 pages, 14 figure

    Rejectionist islamism in Saudi Arabia : the story of Juhayman al-'Utaybi revisited

    Get PDF
    The storming of the Mecca mosque by Juhayman al-[ain]Utaybi and his fellow rebels in November 1979 represents one of the most spectacular events in the modern history of Saudi Arabia. Yet, it is one of the least understood. Even decades after the event, many important questions remain unanswered. Who were the rebels, and what did they want? Why and how did Juhayman's group come into existence? What happened with the rebels and their ideas after the Mecca events? This article seeks to shed light on the story and legacy of Juhayman al-[ain]Utaybi with new information gathered from extensive fieldwork in Saudi Arabia and elsewhere

    Saudi Arabia Backgrounder: Who are the Islamists?

    Get PDF
    This briefing, based on dozens of interviews in the country between March and May 2004, examines the genealogy of Saudi Arabia's various Islamist groupings.ICG Middle East Report N°31

    Effect of anisotropy in the S=1S=1 underscreened Kondo lattice

    Get PDF
    We study the effect of crystal field anisotropy in the underscreened S=1S=1 Kondo lattice model. Starting from the two orbital Anderson lattice model and including a local anisotropy term, we show, through Schrieffer-Wolff transformation, that local anisotropy is equivalent to an anisotropic Kondo interaction (J∄≠J⊄J_{\parallel} \neq{J_{\perp}}). The competition and coexistence between ferromagnetism and Kondo effect in this effective model is studied within a generalized mean-field approximation. Several regimes are obtained, depending on the parameters, exhibiting or not coexistence of magnetic order and Kondo effect. Particularly, we show that a re-entrant Kondo phase at low temperature can be obtained. We are also able to describe phases where the Kondo temperature is smaller than the Curie temperature (TK<TCT_K<T_C). We propose that some aspects of uranium and neptunium compounds that present coexistence of Kondo effect and ferromagnetism, can be understood within this model.Comment: 7 pages, 3 figure
    • 

    corecore